The Max-Plus Algebra of the Natural Numbers has no Finite Equational Basis
نویسندگان
چکیده
منابع مشابه
The max-plus algebra of the natural numbers has no finite equational basis
This paper shows that the collection of identities which hold in the algebra N of the natural numbers with constant zero, and binary operations of sum and maximum is not finitely based. Moreover, it is proven that, for every n, the equations in at most n variables that hold in N do not form an equational basis. As a stepping stone in the proof of these facts, several results of independent inte...
متن کاملOn the Two-Variable Fragment of the Equational Theory of the Max-Sum Algebra of the Natural Numbers
This paper shows that the collection of identities in two variables which hold in the algebra N of the natural numbers with constant zero, and binary operations of sum and maximum does not have a finite equational axiomatization. This gives an alternative proof of the non-existence of a finite basis for N—a result previously obtained by the authors. As an application of the main theorem, it is ...
متن کاملMax-plus algebra
The max-plus semiring Rmax is the set R∪{−∞}, equipped with the addition (a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a + b. The identity element for the addition, zero, is −∞, and the identity element for the multiplication, unit, is 0. To illuminate the linear algebraic nature of the results, the generic notations +, , × (or concatenation), 0 and 1 are used for the addition, the sum, ...
متن کاملCCS with Hennessy's merge has no finite-equational axiomatization
This paper confirms a conjecture of Bergstra and Klop’s from 1984 by establishing that the process algebra obtained by adding an auxiliary operator proposed by Hennessy in 1981 to the recursion free fragment of Milner’s Calculus of Communicationg Systems is not finitely based modulo bisimulation equivalence. Thus Hennessy’s merge cannot replace the left merge and communication merge operators p...
متن کاملLinear Projectors in the max-plus Algebra
In general semimodules, we say that the image of a linear operator B and the kernel of a linear operator C are direct factors if every equivalence class modulo C crosses the image of B at a unique point. For linear maps represented by matrices over certain idempotent semifields such as the (max,+)-semiring, we give necessary and sufficient conditions for an image and a kernel to be direct facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BRICS Report Series
سال: 1999
ISSN: 1601-5355,0909-0878
DOI: 10.7146/brics.v6i33.20102